EXAMPLE 8 Solve: $\log_7 (x + 1) + \log_7 (x - 1) = \log_7 8$.

Try Exercise 57.

match the equation with an equivalent equation from the column on the right that could be the next step in the solution process.

- 1. (e) $5^x = 3$
- **2.** (a) $e^{5x} = 3$
- **3.** (f) $\ln x = 3$
- 4. (h) $\log_x 5 = 3$
- 5. (b) $\log_5 x + \log_5 (x 2) = 3$
- 6. (d) $\log_5 x \log_5 (x 2) = 3$
- 7. (g) $\ln x \ln (x 2) = 3$
- 8. (c) $\log x + \log (x 2) = 3$

a) $\ln e^{5x} = \ln 3$ b) $\log_5 (x^2 - 2x) = 3$ c) $\log (x^2 - 2x) = 3$ d) $\log_5 \frac{x}{x - 2} = 3$ e) $\log 5^x = \log 3$ f) $e^3 = x$ g) $\ln \frac{x}{x - 2} = 3$ h) $x^3 = 5$ Solve. Where appropriate, include approximations to three decimal places.

	9. $3^{2x} = 81$ 2 10	0. $2^{3x} = 64$ 2
	11. $4^x = 32$ $\frac{5}{2}$ 1	2. $9^x = 27 \frac{3}{2}$
	13. $2^x = 10$ \square 14	4. $2^x = 24$
	15. $2^{x+5} = 16 - 1$	6. $2^{x-1} = 8 4$
	17. $8^{x-3} = 19$ \Box 1	8. $5^{x+2} = 15$.
	19. $e^t = 50$ \Box 2	$e^t = 20 \Box$
	21. $e^{-0.02t} = 8$: 2	2. $e^{-0.01t} = 100$.
	23. $5 = 3^{x+1}$ \square 2	4. $7 = 3^{x-1}$.
	25. $4.9^x - 87 = 0$ \Box 2	6. $7.2^x - 65 = 0$.
	27. $19 = 2e^{4x}$ \therefore 2	8. $29 = 3e^{2x}$:
	29. $7 + 3e^{5x} = 13$ 3	0. $4 + 5e^{4x} = 9$ 0
Aha!	31. $\log_3 x = 4$ 81 3	2. $\log_2 x = 6$ 64 TW
	33. $\log_2 x = -3 \frac{1}{8}$ 3	4. $\log_5 x = 3$ 125
	35. $\ln x = 5 e^5 \approx 148.413$ 3	6. $\ln x = 4 e^4 \approx 54.598$
	37. $\ln(4x) = 3$ 🖸 🗐 3	8. $\ln(3x) = 2$.
	39. $\log x = 2.5$ i 4	$0. \log x = 0.5 \boxdot$
	41. $\ln(2x+1) = 4$ \therefore 4	2. $\ln(4x-2) = 3$:
Aha!		4. $\log x = 1$ 10
	45. $5 \ln x = -15$ $e^{-3} \approx 0.050$	6. $3\ln x = -3 e^{-1} \approx 0.368$
	47. $\log_2(8-6x) = 5 -4 4$	8. $\log_5(2x-7) = 3$ 66
	49. $\log(x-9) + \log x = 1$	0
	50. $\log(x+9) + \log x = 1$	
	51. $\log x - \log (x + 3) = 1$	No solution
	52. $\log x - \log (x + 7) = -1$.7
Aha!	53. $\log(2x + 1) = \log 5 - 2$	
	54. $\log(x + 1) - \log x = 0$ No solution	
	55. $\log_4(x+3) = 2 + \log_4(x-5)$ $\frac{83}{15}$	
	56. $\log_2(x+3) = 4 + \log_2(x-3) - \frac{17}{5}$	
	57. $\log_7(x+1) + \log_7(x+2) = \log_7 6$ 1	
	58. $\log_6(x+3) + \log_6(x+2) = \log_6 20$ 2	
	59. $\log_5(x+4) + \log_5(x-4) = \log_5 20$ 6	
	60. $\log_4(x+2) + \log_4(x-7) = \log_4 10$ 8	
	61. $\ln(x+5) + \ln(x+1) = \ln 12$ 1	
	62. $\ln(x-6) + \ln(x+3) = \ln 22$ 8	
	63. $\log_2(x-3) + \log_2(x+3)$	
	64. $\log_3(x-4) + \log_3(x+4)$	(+) = 2 - 5

P

⊡ Answers to Exercises 13, 14, 17–29, and 37–42 are on p. IA-26.

65. $\log_{12} (x + 5) - \log_{12} (x - 4) = \log_{12} 3 \frac{17}{2}$ **66.** $\log_6 (x + 7) - \log_6 (x - 2) = \log_6 5 \frac{17}{4}$ **67.** $\log_2 (x - 2) + \log_2 x = 3 4$

68. $\log_4(x+6) - \log_4 x = 2$

69.
$$e^{0.5x} - 7 = 2x + 6$$

 $-6.480, 6.519$
70. $e^{-x} - 3 = x^2$
 -1.873
71. $\ln(3x) = 3x - 8$
72. $\ln(x^2) = -x^2$

- **71.** $\ln (3x) = 3x 8$ 0.000112, 3.445 **73.** Find the value of x for which the natural logarithm is the same as the common logarithm. 1
- **74.** Find all values of *x* for which the common logarithm of the square of *x* is the same as the square of the common logarithm of *x*. 1, 100
- **1 75.** Christina finds that the solution of $\log_3 (x + 4) = 1$ is -1, but rejects -1 as an answer because it is negative. What mistake is she making?
- N 76. Could Example 2 have been solved by taking the natural logarithm on both sides? Why or why not?

SKILL REVIEW

To prepare for Section 9.7, review using the five-step problem-solving strategy.

Solve.

77. A rectangle is 6 ft longer than it is wide. Its perimeter is 26 ft. Find the length and the width. [1.7] Length: 9.5 ft; width: 3.5 ft

- 78. Under one health insurance plan offered in California, the maximum co-pay for an individual is \$3000 per calendar year. The co-pay for each visit to a specialist is \$40, and the co-pay for a hospitalization is \$1000. With hospitalizations and specialist visits, Marguerite reached the maximum co-pay in 2010. If she was hospitalized twice, how many visits to specialists did she make? [4.1] 25 visits or more Source: ehealthinsurance.com
- **79.** Joanna wants to mix Golden Days bird seed containing 25% sunflower seeds with Snowy Friends bird seed containing 40% sunflower seeds. She wants 50 lb of a mixture containing 33% sunflower seeds. How much of each type should she use? [3.3] Golden Days: $23\frac{1}{3}$ lb; Snowy Friends: $26\frac{2}{3}$ lb

- 80. The outside edge of a picture frame measures 12 cm by 19 cm, and 144 cm² of picture shows. Find the width of the frame. [5.8] 1.5 cm
- 81. Max can key in a musical score in 2 hr. Miles takes 3 hr to key in the same score. How long would it take them, working together, to key in the score? $[6.5] 1\frac{1}{5}$ hr
- **82.** A sign is in the shape of a right triangle. The hypotenuse is 3 ft long, and the base and the height of the triangle are equal. Find the length of the base and the height. Round to the nearest tenth of a foot. [9.7] Approximately 2.1 ft

SYNTHESIS

- **11** 83. Can the principle of logarithmic equality be expanded to include all functions? That is, is the statement "m = n is equivalent to f(m) = f(n)" true for any function f? Why or why not?
- **84.** Explain how Exercises 39 and 40 could be solved using the graph of $f(x) = \log x$.

Solve. If no solution exists, state this.

85. $27^x = 81^{2x-3}$ $\frac{12}{5}$	86. $8^x = 16^{3x+9} - 4$
87. $\log_x (\log_3 27) = 3 \sqrt[3]{3}$	88. $\log_6(\log_2 x) = 0$ 2
89. $x \log \frac{1}{8} = \log 8 - 1$	90. $\log_5 \sqrt{x^2 - 9} = 1$
	$\pm\sqrt{34}$

- 91. $2^{x^2+4x} = \frac{1}{8} -3, -1$ 92. $\log(\log x) = 5$ 93. $\log_5 |x| = 4 -625, 625$ 94. $\log x^2 = (\log x)^2$ 95. $\log \sqrt{2x} = \sqrt{\log 2x}$ $\frac{1}{2}, 5000$ 96. $1000^{2x+1} = 100^{3x}$ No solution 97. $3^{x^2} \cdot 3^{4x} = \frac{1}{27} -3, -1$ 98. $3^{3x} \cdot 3^{x^2} = 81 -4, 1$ 99. $\log x^{\log x} = 25$ $\frac{1}{100,000}, 100,000$ 100. $3^{2x} - 8 \cdot 3^x + 15 = 0$ $1, \frac{\log 5}{\log 3} \approx 1.465$ 101. $(81^{x-2})(27^{x+1}) = 9^{2x-3}$ $-\frac{1}{3}$ 102. $3^{2x} - 3^{2x-1} = 18$ $\frac{3}{2}$ 103. Given that $2^y = 16^{x-3}$ and $3^{y+2} = 27^x$, find the
- value of x + y. 38
- **104.** If $x = (\log_{125} 5)^{\log_5 125}$, what is the value of $\log_3 x$?
 - Try Exercise Answers: Section 9.6

9. 2 **17.**
$$\frac{\log 19}{\log 8}$$
 + 3 \approx 4.416 **21.** $\frac{\ln 8}{-0.02} \approx -103.972$
47. -4 **49.** 10 **57.** 1 **65.** $\frac{17}{2}$ **69.** -6.480, 6.519

Applications of Exponential and Logarithmic Functions

 Applications of Logarithmic Functions

9.7

 Applications of Exponential Functions We now consider applications of exponential and logarithmic functions.

APPLICATIONS OF LOGARITHMIC FUNCTIONS

EXAMPLE 1 Sound Levels. To measure the volume, or "loudness," of a sound, the *decibel* scale is used. The loudness *L*, in decibels (dB), of a sound is given by

$$L = 10 \cdot \log \frac{I}{I_0},$$

where I is the intensity of the sound, in watts per square meter (W/m²), and $I_0 = 10^{-12}$ W/m². (I_0 is approximately the intensity of the softest sound that can be heard by the human ear.)

- a) The average maximum intensity of sound in a New York subway car is about 3.2 × 10⁻³ W/m². How loud, in decibels, is the sound level?
 Source: Columbia University Mailman School of Public Health
- b) The Occupational Safety and Health Administration (OSHA) considers sustained sound levels of 90 dB and above unsafe. What is the intensity of such sounds?

741

10100,000